Week 11 - Monday

COMP 4500



= What did we talk about last time?
= Polynomial-time reductions



Questions?




Assignment 6




= A businesswoman has two cubes on her desk

= Every day she arranges both cubes so that the front faces
show the current day of the month

= What numbers do you need on the faces of the cubes to allow
this?

= Note: Both cubes must be used for every day




Three-sentence Summary of Reductions

via Gadgets and Efficient Certification




Reductions via Gadgets




= Consider a set of n Boolean variables, x,, x, ..., x

n
= Eachvalueisoora

= Atermis either a variable x;or its negation Xx;

= A clause is a disjunction (set of logical ORs) of terms, like:
X1 VXeVXsVXyVX3V Xy

= A clause has length lif it has [ terms

= A truth assignment is an assignment of o or 1 to every x;




= A clause is satisfied if a truth assignment evaluates it to true

= A collection of clauses is satisfied if a truth assignment
satisfies each clause

= Another way to view satisfiability is that, given clauses C, C,
..., C,, the following statement evaluates to true with some
truth assignment:

Cl/\CZ/\/\Ck



= Consider the following three clauses:
(x1 VX32), (1 VX3), (xz V X3)

= Can you find an assignment of o and 1 to each of the three
variables such that all three clauses evaluate to true (2)?



= The satisfiability problem (SAT):

= Given asetofclausesC,, C,, ..., C, over a set of variables {x_, x,, ...,
x,}, is there a satisfying truth assignment?
= The 3-satisfiability problem (3-SAT) is a special case of SAT in

which all clauses have exactly three terms:

= Given asetofclausesC, C,, ..., C;, each of length 3, over a set of
variables {x_, x,, ..., x,}, is there a satisfying truth assignment?



= Can we reduce 3-SAT to independent set?
= The problems seem completely different:

= Assigning true or false to Boolean variables

= Picking vertices that are not neighboring

= We need some glue that can tie together these two
(seemingly) different problems

= Enter: gadgets

= In this case, we're going to build Boolean constraints into the
nodes and edges of a graph



= Proof:

= We have a black box for independent set and want to solve an
instance of 3-SAT consisting of variables {x_, x,, ..., x,} and clauses C_,
C, ... C.

= Because terms are ORed together in clauses, we only need to pick
one term per clause to be true

= We need to pick one that doesn't have a conflict with a term in
another clause.

= A term has a conflict if it is the negation of the term we pick.



= Construct a graph with 3k nodes grouped into k triangles such
that each triangle contains nodes corresponding to each term
in a clause, each connected by edges.

= In other words, fori=1, 2,..., k, we construct vertices v;

i Via
v;,, joined by edges.

= Each vertexis labeled v;; meaning term jfrom clause C;

= No vertices in an independent set are joined to each other;

thus, no two vertices in each clause could be in the
independent set.



= Although we have guaranteed that no two terms in a clause
will be part of an independent set, we have not prevented
conflicts.

= For each two terms that conflict, we add an edge between
them as well.

= We claim that the original 3-SAT instance is satisfiable if and
only if the graph we constructed has an independent set of
size at least k.



= |f the 3-SAT instance is satisfiable, each triangle in our graph
contains at least one node whose label evaluatesto 1. LetS
be a set consisting of one such node from each triangle.

= Sisindependent, because if there were an edge between two
nodes u, v €S, the labels of u and v would conflict, but that
can't happen, since they both evaluate to 1.



= In the other direction, suppose our graph has an independent set
S of size at least k.

= First, it must be exactly k, because it can't be more without
including more than one per triangle.

= Thus, it must include exactly one per triangle.

= Thereis a truth assignment that satisfies all clauses, specifically:

= |f neither label x; nor X; isin S, arbitrarily set x; to 1

= Otherwise, one of themisin S

If label x; isin S, we set it to 1, otherwise we set it to o
|



= Every NP-complete problem has had other NP-complete
problems reduced to it

= Coming up with clever gadgets that allow the reduction is
hard

= Countless papers proposing gadgets have been published
= Reductions are transitive

= IfZ<,YandY<, X, thenZ <, X



Efficient Certification




= |s there something that sets apart problems that are NP-
complete from other problems that (probably) take
exponential time?

= Yes!

= |t's easy to prove that you have an answer for one

= In other words, they're easy to check



Does this graph have an independent set of size at least k?

= If you show me a set of vertices, claiming they're independent, it's easy to
check that they are

Can this 3-SAT be satisfied?
= If you give me a truth assignment to variables, it's easy to check that every
clause is true

Can you put a set of objects with at least value v into this

knapsack?

= If you show me the objects, it's easy to check that they have the given
value and fit in the knapsack

It's hard to find these solutions, but they're easy to check!



= Input to a problem will be encoded as a finite (binary) string s

= Thelengthof sis |s

= For a decision problem, an algorithm A receives an input
string and returns "yes" or "no"
= This output is A(s)

= A decision problem X is the set of strings for which the answer
Is "yes"

= A solves the problem Xif for all strings s, A(s) = "yes" if and
onlyifse X



= Formally, an algorithm A has polynomial running time if
= There is a polynomial function p(x)

= Such that, for every input string s, the algorithm A terminates on sin
at most O(p(|s|)) steps

= Thus, P is the set of all decision problems X for which there is
an algorithm A with polynomial running time that solves X



= Bis an efficient certifier for a problem X if:

= Bis a polynomial-time algorithm that takes two input arguments s
and t

= There is a polynomial function p(x) such that, for every string s, we
have s € X if and only if there exists a string t such that |t| < p(|s|) and
B(s,t) ="yes"
= B can evaluate a "proof" t for input s
= You could use B as part of a brute force approach, trying lots

of strings t to see if they work for s



NP is the set of all problems for which there exists an efficient

certifier
Note that P € NP

= Why?
= We can make an efficient certifier by simply using an efficient solver

= Such a certifier could even ignore string t and check s on its own

NP is an abbreviation for "nondeterministic polynomial” because,
for a machine that can nondeterministically explore all paths at
the same time, checking a solution and finding a solution take the
same time



= |s there a problem in NP thatis notin P?

= Many computer scientists believe that this is true

= Al NP-complete problems are believed to be too hard to solve in
polynomial time

= Other problems like factoring might not be as hard as NP-complete
but might not be in P either

= People have tried really hard to solve NP-complete problems
in polynomial time...and failed



Thoughts about NP

If P=NP, then the world would be a profoundly different place than we
usually assume it to be. There would be no special value in "creative
leaps,” no fundamental gap between solving a problem and recognizing
the solution once it’s found. Everyone who could appreciate a symphony
would be Mozart; everyone who could follow a step-by-step argument
would be Gauss; everyone who could recognize a good investment
strategy would be Warren Buffett. It’s possible to put the point in
Darwinian terms: if this is the sort of universe we inhabited, why

wouldn’t we already have evolved to take advantage of it?
Scott Aaronson




Upcoming




= Proving problems NP-complete
= Review



= Work on Assignment 6
= Read Section 8.4



	COMP 4500
	Last time
	Questions?
	Assignment 6
	Logical warmup
	Three-sentence Summary of Reductions via Gadgets and Efficient Certification
	Reductions via Gadgets
	SAT and 3-SAT
	Satisfiability
	Satisfiability example
	Satisfiability
	Reducing 3-SAT to independent set
	3-SAT ≤P independent set
	Proof continued
	Proof continued
	Proof continued
	Proof continued
	Observations about reductions
	Efficient Certification
	What makes a problem NP?
	Checking
	Problems and algorithms
	The class of problems P
	Efficient certification
	The class of problems NP
	P = NP?
	Thoughts about NP
	Upcoming
	Next time…
	Reminders

