
Week 11 - Monday

 What did we talk about last time?
 Polynomial-time reductions

 A businesswoman has two cubes on her desk
 Every day she arranges both cubes so that the front faces

show the current day of the month
 What numbers do you need on the faces of the cubes to allow

this?
 Note: Both cubes must be used for every day

 Consider a set of n Boolean variables, x1, x2, …, xn
 Each value is 0 or 1
 A term is either a variable 𝑥𝑥𝑖𝑖or its negation �𝑥𝑥𝑖𝑖
 A clause is a disjunction (set of logical ORs) of terms, like:

𝑥𝑥1 ∨ 𝑥𝑥6 ∨ 𝑥𝑥5 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4
 A clause has length l if it has l terms
 A truth assignment is an assignment of 0 or 1 to every 𝑥𝑥𝑖𝑖

 A clause is satisfied if a truth assignment evaluates it to true
 A collection of clauses is satisfied if a truth assignment

satisfies each clause
 Another way to view satisfiability is that, given clauses C1, C2,

…, Ck, the following statement evaluates to true with some
truth assignment:

𝐶𝐶1 ∧ 𝐶𝐶2 ∧ ⋯∧ 𝐶𝐶𝑘𝑘

 Consider the following three clauses:
𝑥𝑥1 ∨ 𝑥𝑥2 , 𝑥𝑥1 ∨ 𝑥𝑥3 , 𝑥𝑥2 ∨ 𝑥𝑥3

 Can you find an assignment of 0 and 1 to each of the three
variables such that all three clauses evaluate to true (1)?

 The satisfiability problem (SAT):
 Given a set of clauses C1, C2, …, Ck over a set of variables {x1, x2, …,

xn}, is there a satisfying truth assignment?
 The 3-satisfiability problem (3-SAT) is a special case of SAT in

which all clauses have exactly three terms:
 Given a set of clauses C1, C2, …, Ck, each of length 3, over a set of

variables {x1, x2, …, xn}, is there a satisfying truth assignment?

 Can we reduce 3-SAT to independent set?
 The problems seem completely different:
 Assigning true or false to Boolean variables
 Picking vertices that are not neighboring

 We need some glue that can tie together these two
(seemingly) different problems

 Enter: gadgets
 In this case, we're going to build Boolean constraints into the

nodes and edges of a graph

 Proof:
 We have a black box for independent set and want to solve an

instance of 3-SAT consisting of variables {x1, x2, …, xn} and clauses C1,
C2, …, Ck.
 Because terms are ORed together in clauses, we only need to pick

one term per clause to be true
 We need to pick one that doesn't have a conflict with a term in

another clause.
 A term has a conflict if it is the negation of the term we pick.

 Construct a graph with 3k nodes grouped into k triangles such
that each triangle contains nodes corresponding to each term
in a clause, each connected by edges.

 In other words, for i = 1, 2,…, k, we construct vertices vi1, vi2,
vi3, joined by edges.

 Each vertex is labeled vij, meaning term j from clause Ci.
 No vertices in an independent set are joined to each other;

thus, no two vertices in each clause could be in the
independent set.

 Although we have guaranteed that no two terms in a clause
will be part of an independent set, we have not prevented
conflicts.

 For each two terms that conflict, we add an edge between
them as well.

 We claim that the original 3-SAT instance is satisfiable if and
only if the graph we constructed has an independent set of
size at least k.

 If the 3-SAT instance is satisfiable, each triangle in our graph
contains at least one node whose label evaluates to 1. Let S
be a set consisting of one such node from each triangle.

 S is independent, because if there were an edge between two
nodes u, v ∈ S, the labels of u and v would conflict, but that
can't happen, since they both evaluate to 1.

 In the other direction, suppose our graph has an independent set
S of size at least k.

 First, it must be exactly k, because it can't be more without
including more than one per triangle.

 Thus, it must include exactly one per triangle.
 There is a truth assignment that satisfies all clauses, specifically:
 If neither label 𝑥𝑥𝑖𝑖 nor �𝑥𝑥𝑖𝑖 is in S, arbitrarily set 𝑥𝑥𝑖𝑖 to 1
 Otherwise, one of them is in S
▪ If label 𝑥𝑥𝑖𝑖 is in S, we set it to 1, otherwise we set it to 0

∎

 Every NP-complete problem has had other NP-complete
problems reduced to it

 Coming up with clever gadgets that allow the reduction is
hard
 Countless papers proposing gadgets have been published

 Reductions are transitive
 If Z ≤P Y and Y ≤P X, then Z ≤P X

 Is there something that sets apart problems that are NP-
complete from other problems that (probably) take
exponential time?

 Yes!
 It's easy to prove that you have an answer for one
 In other words, they're easy to check

 Does this graph have an independent set of size at least k?
 If you show me a set of vertices, claiming they're independent, it's easy to

check that they are
 Can this 3-SAT be satisfied?
 If you give me a truth assignment to variables, it's easy to check that every

clause is true
 Can you put a set of objects with at least value v into this

knapsack?
 If you show me the objects, it's easy to check that they have the given

value and fit in the knapsack
 It's hard to find these solutions, but they're easy to check!

 Input to a problem will be encoded as a finite (binary) string s
 The length of s is |s|
 For a decision problem, an algorithm A receives an input

string and returns "yes" or "no"
 This output is A(s)

 A decision problem X is the set of strings for which the answer
is "yes"

 A solves the problem X if for all strings s, A(s) = "yes" if and
only if s ∈ X

 Formally, an algorithm A has polynomial running time if
 There is a polynomial function p(x)
 Such that, for every input string s, the algorithm A terminates on s in

at most O(p(|s|)) steps
 Thus, P is the set of all decision problems X for which there is

an algorithm A with polynomial running time that solves X

 B is an efficient certifier for a problem X if:
 B is a polynomial-time algorithm that takes two input arguments s

and t
 There is a polynomial function p(x) such that, for every string s, we

have s ∈ X if and only if there exists a string t such that |t| ≤ p(|s|) and
B(s,t) = "yes"

 B can evaluate a "proof" t for input s
 You could use B as part of a brute force approach, trying lots

of strings t to see if they work for s

 NP is the set of all problems for which there exists an efficient
certifier

 Note that P⊆NP
 Why?
 We can make an efficient certifier by simply using an efficient solver
 Such a certifier could even ignore string t and check s on its own

 NP is an abbreviation for "nondeterministic polynomial" because,
for a machine that can nondeterministically explore all paths at
the same time, checking a solution and finding a solution take the
same time

 Is there a problem in NP that is not in P?
 Many computer scientists believe that this is true
 All NP-complete problems are believed to be too hard to solve in

polynomial time
 Other problems like factoring might not be as hard as NP-complete

but might not be in P either
 People have tried really hard to solve NP-complete problems

in polynomial time…and failed

If P=NP, then the world would be a profoundly different place than we
usually assume it to be. There would be no special value in “creative
leaps,” no fundamental gap between solving a problem and recognizing
the solution once it’s found. Everyone who could appreciate a symphony
would be Mozart; everyone who could follow a step-by-step argument
would be Gauss; everyone who could recognize a good investment
strategy would be Warren Buffett. It’s possible to put the point in
Darwinian terms: if this is the sort of universe we inhabited, why
wouldn’t we already have evolved to take advantage of it?

Scott Aaronson

 Proving problems NP-complete
 Review

 Work on Assignment 6
 Read Section 8.4

	COMP 4500
	Last time
	Questions?
	Assignment 6
	Logical warmup
	Three-sentence Summary of Reductions via Gadgets and Efficient Certification
	Reductions via Gadgets
	SAT and 3-SAT
	Satisfiability
	Satisfiability example
	Satisfiability
	Reducing 3-SAT to independent set
	3-SAT ≤P independent set
	Proof continued
	Proof continued
	Proof continued
	Proof continued
	Observations about reductions
	Efficient Certification
	What makes a problem NP?
	Checking
	Problems and algorithms
	The class of problems P
	Efficient certification
	The class of problems NP
	P = NP?
	Thoughts about NP
	Upcoming
	Next time…
	Reminders

