Week 11 - Monday

COMP 4500

- What did we talk about last time?
- Polynomial-time reductions

Questions?

Assignment 6

Logical warmup

- A businesswoman has two cubes on her desk
- Every day she arranges both cubes so that the front faces show the current day of the month
- What numbers do you need on the faces of the cubes to allow this?
- Note: Both cubes must be used for every day

Three-sentence Summary of Reductions via Gadgets and Efficient Certification

Reductions via Gadgets

SAT and 3-SAT

- Consider a set of *n* Boolean variables, *x*₁, *x*₂, ..., *x_n*
- Each value is o or 1
- A **term** is either a variable x_i or its negation $\overline{x_i}$
- A **clause** is a disjunction (set of logical ORs) of terms, like: $x_1 \lor \overline{x_6} \lor \overline{x_5} \lor x_2 \lor \overline{x_3} \lor x_4$
- A clause has length *l* if it has *l* terms
- A truth assignment is an assignment of o or 1 to every x_i

Satisfiability

- A clause is **satisfied** if a truth assignment evaluates it to true
- A collection of clauses is satisfied if a truth assignment satisfies each clause
- Another way to view satisfiability is that, given clauses C₁, C₂, ..., C_k, the following statement evaluates to true with some truth assignment:

$$C_1 \wedge C_2 \wedge \cdots \wedge C_k$$

Satisfiability example

- Consider the following three clauses: $(x_1 \lor \overline{x_2}), (\overline{x_1} \lor \overline{x_3}), (x_2 \lor \overline{x_3})$
- Can you find an assignment of o and 1 to each of the three variables such that all three clauses evaluate to true (1)?

Satisfiability

- The satisfiability problem (SAT):
 - Given a set of clauses C₁, C₂, ..., C_k over a set of variables {x₁, x₂, ..., x_n}, is there a satisfying truth assignment?
- The 3-satisfiability problem (3-SAT) is a special case of SAT in which all clauses have exactly three terms:
 - Given a set of clauses C₁, C₂, ..., C_k, each of length 3, over a set of variables {x₁, x₂, ..., x_n}, is there a satisfying truth assignment?

Reducing 3-SAT to independent set

- Can we reduce 3-SAT to independent set?
- The problems seem completely different:
 - Assigning true or false to Boolean variables
 - Picking vertices that are not neighboring
- We need some glue that can tie together these two (seemingly) different problems
- Enter: gadgets
- In this case, we're going to build Boolean constraints into the nodes and edges of a graph

$3-SAT \leq_P independent set$

Proof:

- We have a black box for independent set and want to solve an instance of 3-SAT consisting of variables {x₁, x₂, ..., x_n} and clauses C₁, C₂, ..., C_k.
- Because terms are ORed together in clauses, we only need to pick one term per clause to be true
- We need to pick one that doesn't have a conflict with a term in another clause.
- A term has a conflict if it is the negation of the term we pick.

- Construct a graph with 3k nodes grouped into k triangles such that each triangle contains nodes corresponding to each term in a clause, each connected by edges.
- In other words, for *i* = 1, 2,..., *k*, we construct vertices *v_{i1}*, *v_{i2}*, *v_{i3}*, joined by edges.
- Each vertex is labeled v_{ij} meaning term **j** from clause C_i .
- No vertices in an independent set are joined to each other; thus, no two vertices in each clause could be in the independent set.

- Although we have guaranteed that no two terms in a clause will be part of an independent set, we have not prevented conflicts.
- For each two terms that conflict, we add an edge between them as well.
- We claim that the original 3-SAT instance is satisfiable if and only if the graph we constructed has an independent set of size at least k.

- If the 3-SAT instance is satisfiable, each triangle in our graph contains at least one node whose label evaluates to 1. Let S
 be a set consisting of one such node from each triangle.
- S is independent, because if there were an edge between two nodes u, v ∈ S, the labels of u and v would conflict, but that can't happen, since they both evaluate to 1.

- In the other direction, suppose our graph has an independent set S of size at least k.
- First, it must be exactly k, because it can't be more without including more than one per triangle.
- Thus, it must include exactly one per triangle.
- There is a truth assignment that satisfies all clauses, specifically:
 - If neither label x_i nor $\overline{x_i}$ is in **S**, arbitrarily set x_i to 1
 - Otherwise, one of them is in S
 - If label x_i is in **S**, we set it to 1, otherwise we set it to 0

Observations about reductions

- Every NP-complete problem has had other NP-complete problems reduced to it
- Coming up with clever gadgets that allow the reduction is hard
 - Countless papers proposing gadgets have been published
- Reductions are transitive
 - If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$

Efficient Certification

What makes a problem NP?

- Is there something that sets apart problems that are NPcomplete from other problems that (probably) take exponential time?
- Yes!
- It's easy to prove that you have an answer for one
- In other words, they're easy to check

Checking

- Does this graph have an independent set of size at least *k*?
 - If you show me a set of vertices, claiming they're independent, it's easy to check that they are
- Can this 3-SAT be satisfied?
 - If you give me a truth assignment to variables, it's easy to check that every clause is true
- Can you put a set of objects with at least value v into this knapsack?
 - If you show me the objects, it's easy to check that they have the given value and fit in the knapsack
- It's hard to find these solutions, but they're easy to check!

Problems and algorithms

- Input to a problem will be encoded as a finite (binary) string s
- The length of s is |s|
- For a decision problem, an algorithm A receives an input string and returns "yes" or "no"
 - This output is A(s)
- A decision problem X is the set of strings for which the answer is "yes"
- A solves the problem X if for all strings s, A(s) = "yes" if and only if s ∈ X

The class of problems P

- Formally, an algorithm **A** has polynomial running time if
 - There is a polynomial function *p*(*x*)
 - Such that, for every input string s, the algorithm A terminates on s in at most O(p(|s|)) steps
- Thus, P is the set of all decision problems X for which there is an algorithm A with polynomial running time that solves X

Efficient certification

B is an **efficient certifier** for a problem **X** if:

- B is a polynomial-time algorithm that takes two input arguments s and t
- There is a polynomial function *p*(*x*) such that, for every string *s*, we have *s* ∈ *X* if and only if there exists a string *t* such that |*t*| ≤ *p*(|*s*|) and *B*(*s*,*t*) = "yes"
- **B** can evaluate a "proof" **t** for input **s**
- You could use B as part of a brute force approach, trying lots of strings t to see if they work for s

The class of problems NP

- NP is the set of all problems for which there exists an efficient certifier
- Note that $\mathbf{P} \subseteq \mathbf{NP}$
 - Why?
 - We can make an efficient certifier by simply using an efficient solver
 - Such a certifier could even ignore string t and check s on its own
- NP is an abbreviation for "nondeterministic polynomial" because, for a machine that can nondeterministically explore all paths at the same time, checking a solution and finding a solution take the same time

P = NP?

- Is there a problem in NP that is not in P?
 - Many computer scientists believe that this is true
 - All NP-complete problems are believed to be too hard to solve in polynomial time
 - Other problems like factoring might not be as hard as NP-complete but might not be in P either
- People have tried really hard to solve NP-complete problems in polynomial time...and failed

Thoughts about NP

If P=NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in "creative" leaps," no fundamental gap between solving a problem and recognizing the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett. It's possible to put the point in Darwinian terms: if this is the sort of universe we inhabited, why wouldn't we already have evolved to take advantage of it?

Scott Aaronson

Upcoming

- Proving problems NP-complete
- Review

- Work on Assignment 6
- Read Section 8.4