
Week 11 - Monday

 What did we talk about last time?
 Polynomial-time reductions

 A businesswoman has two cubes on her desk
 Every day she arranges both cubes so that the front faces

show the current day of the month
 What numbers do you need on the faces of the cubes to allow

this?
 Note: Both cubes must be used for every day

 Consider a set of n Boolean variables, x1, x2, …, xn
 Each value is 0 or 1
 A term is either a variable 𝑥𝑥𝑖𝑖or its negation �𝑥𝑥𝑖𝑖
 A clause is a disjunction (set of logical ORs) of terms, like:

𝑥𝑥1 ∨ 𝑥𝑥6 ∨ 𝑥𝑥5 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4
 A clause has length l if it has l terms
 A truth assignment is an assignment of 0 or 1 to every 𝑥𝑥𝑖𝑖

 A clause is satisfied if a truth assignment evaluates it to true
 A collection of clauses is satisfied if a truth assignment

satisfies each clause
 Another way to view satisfiability is that, given clauses C1, C2,

…, Ck, the following statement evaluates to true with some
truth assignment:

𝐶𝐶1 ∧ 𝐶𝐶2 ∧ ⋯∧ 𝐶𝐶𝑘𝑘

 Consider the following three clauses:
𝑥𝑥1 ∨ 𝑥𝑥2 , 𝑥𝑥1 ∨ 𝑥𝑥3 , 𝑥𝑥2 ∨ 𝑥𝑥3

 Can you find an assignment of 0 and 1 to each of the three
variables such that all three clauses evaluate to true (1)?

 The satisfiability problem (SAT):
 Given a set of clauses C1, C2, …, Ck over a set of variables {x1, x2, …,

xn}, is there a satisfying truth assignment?
 The 3-satisfiability problem (3-SAT) is a special case of SAT in

which all clauses have exactly three terms:
 Given a set of clauses C1, C2, …, Ck, each of length 3, over a set of

variables {x1, x2, …, xn}, is there a satisfying truth assignment?

 Can we reduce 3-SAT to independent set?
 The problems seem completely different:
 Assigning true or false to Boolean variables
 Picking vertices that are not neighboring

 We need some glue that can tie together these two
(seemingly) different problems

 Enter: gadgets
 In this case, we're going to build Boolean constraints into the

nodes and edges of a graph

 Proof:
 We have a black box for independent set and want to solve an

instance of 3-SAT consisting of variables {x1, x2, …, xn} and clauses C1,
C2, …, Ck.
 Because terms are ORed together in clauses, we only need to pick

one term per clause to be true
 We need to pick one that doesn't have a conflict with a term in

another clause.
 A term has a conflict if it is the negation of the term we pick.

 Construct a graph with 3k nodes grouped into k triangles such
that each triangle contains nodes corresponding to each term
in a clause, each connected by edges.

 In other words, for i = 1, 2,…, k, we construct vertices vi1, vi2,
vi3, joined by edges.

 Each vertex is labeled vij, meaning term j from clause Ci.
 No vertices in an independent set are joined to each other;

thus, no two vertices in each clause could be in the
independent set.

 Although we have guaranteed that no two terms in a clause
will be part of an independent set, we have not prevented
conflicts.

 For each two terms that conflict, we add an edge between
them as well.

 We claim that the original 3-SAT instance is satisfiable if and
only if the graph we constructed has an independent set of
size at least k.

 If the 3-SAT instance is satisfiable, each triangle in our graph
contains at least one node whose label evaluates to 1. Let S
be a set consisting of one such node from each triangle.

 S is independent, because if there were an edge between two
nodes u, v ∈ S, the labels of u and v would conflict, but that
can't happen, since they both evaluate to 1.

 In the other direction, suppose our graph has an independent set
S of size at least k.

 First, it must be exactly k, because it can't be more without
including more than one per triangle.

 Thus, it must include exactly one per triangle.
 There is a truth assignment that satisfies all clauses, specifically:
 If neither label 𝑥𝑥𝑖𝑖 nor �𝑥𝑥𝑖𝑖 is in S, arbitrarily set 𝑥𝑥𝑖𝑖 to 1
 Otherwise, one of them is in S
▪ If label 𝑥𝑥𝑖𝑖 is in S, we set it to 1, otherwise we set it to 0

∎

 Every NP-complete problem has had other NP-complete
problems reduced to it

 Coming up with clever gadgets that allow the reduction is
hard
 Countless papers proposing gadgets have been published

 Reductions are transitive
 If Z ≤P Y and Y ≤P X, then Z ≤P X

 Is there something that sets apart problems that are NP-
complete from other problems that (probably) take
exponential time?

 Yes!
 It's easy to prove that you have an answer for one
 In other words, they're easy to check

 Does this graph have an independent set of size at least k?
 If you show me a set of vertices, claiming they're independent, it's easy to

check that they are
 Can this 3-SAT be satisfied?
 If you give me a truth assignment to variables, it's easy to check that every

clause is true
 Can you put a set of objects with at least value v into this

knapsack?
 If you show me the objects, it's easy to check that they have the given

value and fit in the knapsack
 It's hard to find these solutions, but they're easy to check!

 Input to a problem will be encoded as a finite (binary) string s
 The length of s is |s|
 For a decision problem, an algorithm A receives an input

string and returns "yes" or "no"
 This output is A(s)

 A decision problem X is the set of strings for which the answer
is "yes"

 A solves the problem X if for all strings s, A(s) = "yes" if and
only if s ∈ X

 Formally, an algorithm A has polynomial running time if
 There is a polynomial function p(x)
 Such that, for every input string s, the algorithm A terminates on s in

at most O(p(|s|)) steps
 Thus, P is the set of all decision problems X for which there is

an algorithm A with polynomial running time that solves X

 B is an efficient certifier for a problem X if:
 B is a polynomial-time algorithm that takes two input arguments s

and t
 There is a polynomial function p(x) such that, for every string s, we

have s ∈ X if and only if there exists a string t such that |t| ≤ p(|s|) and
B(s,t) = "yes"

 B can evaluate a "proof" t for input s
 You could use B as part of a brute force approach, trying lots

of strings t to see if they work for s

 NP is the set of all problems for which there exists an efficient
certifier

 Note that P⊆NP
 Why?
 We can make an efficient certifier by simply using an efficient solver
 Such a certifier could even ignore string t and check s on its own

 NP is an abbreviation for "nondeterministic polynomial" because,
for a machine that can nondeterministically explore all paths at
the same time, checking a solution and finding a solution take the
same time

 Is there a problem in NP that is not in P?
 Many computer scientists believe that this is true
 All NP-complete problems are believed to be too hard to solve in

polynomial time
 Other problems like factoring might not be as hard as NP-complete

but might not be in P either
 People have tried really hard to solve NP-complete problems

in polynomial time…and failed

If P=NP, then the world would be a profoundly different place than we
usually assume it to be. There would be no special value in “creative
leaps,” no fundamental gap between solving a problem and recognizing
the solution once it’s found. Everyone who could appreciate a symphony
would be Mozart; everyone who could follow a step-by-step argument
would be Gauss; everyone who could recognize a good investment
strategy would be Warren Buffett. It’s possible to put the point in
Darwinian terms: if this is the sort of universe we inhabited, why
wouldn’t we already have evolved to take advantage of it?

Scott Aaronson

 Proving problems NP-complete
 Review

 Work on Assignment 6
 Read Section 8.4

	COMP 4500
	Last time
	Questions?
	Assignment 6
	Logical warmup
	Three-sentence Summary of Reductions via Gadgets and Efficient Certification
	Reductions via Gadgets
	SAT and 3-SAT
	Satisfiability
	Satisfiability example
	Satisfiability
	Reducing 3-SAT to independent set
	3-SAT ≤P independent set
	Proof continued
	Proof continued
	Proof continued
	Proof continued
	Observations about reductions
	Efficient Certification
	What makes a problem NP?
	Checking
	Problems and algorithms
	The class of problems P
	Efficient certification
	The class of problems NP
	P = NP?
	Thoughts about NP
	Upcoming
	Next time…
	Reminders

